
Efficiency/Effectiveness
Trade-offs	in	Learning	to	Rank

Tutorial	@	ICTIR	2017

Claudio	Lucchese
Ca’	Foscari University	of	Venice

Venice,	Italy

Franco	Maria	Nardini
HPC	Lab,	ISTI-CNR

Pisa,	Italy

l a b o r a t o r y



Publicly	available	Learning	to	Rank	Datasets

• Istella Learning	to	Rank	datasets,	2016
• Yahoo!	Learning	to	Rank	Challenge	v2.0,	2011
• Microsoft	Learning	to	Rank	datasets	(MSLR),	2010
• Yandex IMAT,	2009
• LETOR	4.0,	April	2009
• LETOR	3.0,	December	2008
• LETOR	2.0,	December	2007
• LETOR	1.0,	April	2007



Istella Learning	to	Rank	dataset

• Data	“used	in	the	past	to	learn	one	of	the	stages	of	the	Istella
production	ranking	pipeline”	[1,2].
• Istella LETOR	full

• 33,018	queries
• 220	features	per	query-document	pair
• 10,454,629	labeled	instances
• Relevance	judgments	ranging	from	0	(irrelevant)	to	4	(perfectly	relevant)
• The	average	number	of	per-query	examples	is	316.
• It	comes	splitted in	train	and	test	sets	according	to	a	80%-20%	scheme.

[1]	http://blog.istella.it/istella-learning-to-rank-dataset/
[2]	http://www.istella.it



Istella Learning	to	Rank	dataset

• Data	“used	in	the	past	to	learn	one	of	the	stages	of	the	Istella
production	ranking	pipeline”	[1,2].
• Istella-S	LETOR

• 33,018	queries
• 220	features	per	query-document	pair
• 3,408,630	labeled	instances

• by	sampling	irrelevant	pairs	to	an	average	of	103	examples	per	query.	
• Relevance	judgments	ranging	from	0	(irrelevant)	to	4	(perfectly	relevant)
• It	comes	splitted in	train	(60%),	validation	(20%)	and	test	(20%)	sets.

[1]	http://blog.istella.it/istella-learning-to-rank-dataset/
[2]	http://www.istella.it



MSLR	and	Yahoo!

• MSLR	Web30K	and	Web10K
• From	Microsoft
• Partitioned	in	five	fold	for	easy	cross-validation
• Two	sets,	10K	and	30K	queries,	136	features,	5-graded	label
• https://www.microsoft.com/en-us/research/project/mslr/

• Yahoo!	Learning	to	Rank	v2.0
• From	Yahoo!
• Two	datasets
• Each	dataset	is	divided	in	3	sets:	training,	validation,	and	test.
• Set	1:	n.	queries	(train,	valid,	test)	19,944	2,994	6,983.	n.	features:	519
• Set	2:	n.	queries	(train,	valid,	test)	1,266	1,266	3,798.	n.	features:	596
• https://webscope.sandbox.yahoo.com/



Software	and	Libraries

• Training	Learning	to	Rank	models
• XGBoost,	University	of	Washington
• LightGBM,	Microsoft
• CatBoost,	Yandex
• QuickRank,	ISTI-CNR
• scikit-learn
• jforests

• Evaluation	of	Learning	to	Rank	solutions
• RankEval



XGBoost

• Optimized	distributed	gradient	boosting	library
• Implements	machine	learning	gradient	boosting	algorithms

• Including	DART
• Support	for	major	distributed	environment	(Hadoop,	SGE,	MPI)
• Support	for	GPU

• CUDA	Accelerated	Tree	Construction
• XGBoost4J:	Java/Scala	API	to	export	the	core	functionality	of	XGBoost
library.
• Enable	its	use	within	Spark,	Flink and	Dataflow

• Very	popular	on	Kaggle
• https://github.com/dmlc/xgboost

T.	Chen	and	C.	Guestrin.	XGBoost:	A	Scalable	Tree	Boosting	System.	In	Proc.	ACM	SIGKDD,	2016.



LightGBM

• Fast,	distributed,	high	performance	gradient	boosting	framework	based	on	decision	tree
• Part	of	the	Microsoft	Distributed	Machine	Learning	Toolkit	(DMTK)

• Parallel	and	GPU	learning	supported
• https://github.com/Microsoft/LightGBM
• Experiments	on	MSN	(left)	and	Yahoo!	LETOR	(right)	against	XGBoost [1]

[1]	https://github.com/Microsoft/LightGBM/wiki/Experiments



CatBoost

• machine	learning	framework	by	Yandex based	on	gradient	boosting	
over	decision	trees.
• Features

• Support	for	both	numerical	and	categorical	features.
• Data	visualization	tools	included.

• Implementations:	Python,	R,	Command-line
• Jupyter notebook	tutorials	available	on	GitHub
• https://catboost.yandex/



CatBoost



QuickRank

• A	parallel	C++	suite	of	Learning	to	Rank	algorithms
• The	algorithms	currently	implemented	are:

• GBRT [Fried01],	LambdaMART [Wu10],
• Oblivious	GBRT/LambdaMART [Sega10]
• CoordinateAscent [Metz07],	LineSearch [Luen84],	RankBoost [Freu03]
• DART [Rash15],	X-DART [Lucc17],
• CLEAVER [Lucc16],	X-CLEAVER [Lucc17b]

• Available	under	Reciprocal	Public	License	1.5
• http://quickrank.isti.cnr.it/



jforests

• jforests is	a	Java	library	that	implements	tree-based	learning	
algorithms.
• Provides	Risk	Sensitive	LambdaMART
• https://github.com/yasserg/jforests
• Available	under	Apache	License	2.0

Y.	Ganjisaffar,	R.	Caruana,	C.	Lopes,	Bagging	Gradient-Boosted	Trees	for	High	Precision,	Low	Variance	Ranking	Models.	In	
Proc.	ACM	SIGIR,	2011.



RankEval

• An	Evaluation	and	Analysis	Framework	for	Learning-to-Rank	Solutions
• Functionalities:

• Effectiveness	Analysis
• Statistical	Analysis
• Topological	Analysis
• Feature	Analysis

• Support	for	several	formats:	LightGBM,	XGBoost,	QuickRank,	scikit-learn
• Available	Jupyter Notebooks	to	ease	its	use
• Available	under	Mozilla	Public	License	2.0
• http://rankeval.isti.cnr.it/,	https://github.com/hpclab/rankeval



References
[Fried01]	J.	H.	Friedman.	Greedy	function	approximation:	a	gradient	boosting	machine.	Annals	of	Statistics,	pages	1189–1232,	2001.
[Wu10]	Q.	Wu,	C.	Burges,	K.	Svore,	and	J.	Gao.	Adapting	boosting	for	information	retrieval	measures.	Information	Retrieval,	2010.
[Sega10] I.	Segalovich.	Machine	learning	in	search	quality	at	yandex.	Invited	Talk,	ACM	SIGIR,	2010.
[Metz07]	Metzler,	D.,	Croft,	W.B.	Linear	feature-based	models	for	information	retrieval.	Information	Retrieval	10(3),	pages	257–274,	
2007.
[Luen84]	D.	G.	Luenberger.	Linear	and	nonlinear	programming.	Addison	Wesley,	1984.
[Freu03]	Freund,	Y.,	Iyer,	R.,	Schapire,	R.	E.,	&	Singer,	Y.	An	efficient	boosting	algorithm	for	combining	preferences.	The	Journal	of	
machine	learning	research,	4,	933-969	(2003).
[Rash15]	K.V.	Rashmi	and	R.	Gilad-Bachrach.	Dart:	Dropouts	meet	multiple	additive	regression	trees.	Journal	of	Machine	Learning	
Research,	38	(2015).
[Lucc16]	C.	Lucchese,	F.	M.	Nardini,	S.	Orlando,	R.	Perego,	F.	Silvestri,	S.	Trani.	Post-Learning	Optimization	of	Tree	Ensembles	for	
Efficient	Ranking.	ACM	SIGIR,	2016.
[Lucc17]	C.	Lucchese,	F.	M.	Nardini,	S.	Orlando,	R.	Perego and	S.	Trani.	X-DART:	Blending	Dropout	and	Pruning	for	Efficient	Learning	to	
Rank.	ACM	SIGIR,	2017.
[Lucc17b]	C.	Lucchese,	F.	M.	Nardini,	S.	Orlando,	R.	Perego,	F.	Silvestri,	S.	Trani.	X-CLEaVER:	Learning	Ranking	Ensembles	by	Growing	
and	Pruning	Trees.	Paper	under	revision.


