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Efficiency/Effectiveness Trade-offs

* Efficiency in Learning to Rank (LtR) has been
addressed in different ways

Learned Model Application

* Main research lines
* Feature selection Witﬁizaﬁfres
* Optimizing efficiency within the learning process K docs
* Approximate score computation and efficient cascades
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e Efficient traversal of tree-based models
_ _ . Training Learning to Rank
* Different impact on the architecture Data Techinque




Feature Selection



Feature Selection

* Feature selection techniques allows to reduce redundant features
 Redundant features are useless both at training and scoring time

* Filtering out the irrelevant features to enhance the generalization
performance of the learned model

* |dentifying key features also helps to reverse engineer the predictive
model and to interpret the results obtained

o A reduced set of highly discriminative and non redundant features
results in a reduced feature extraction cost and in a faster learning
_ and classification/prediction/ranking




Feature Selection Methods

Feature selection for ranking inherits methods from classification

Classification of feature selection methods [GEO3]

* Filter methods: feature selection is defined as a preprocessing step and can be independent from
learning

* Wrapper methods: utilizes a learning system as a black box to score subsets of features
* Embedded methods: perform feature selection within the training process

* Wrapper or embedded methods: higher computational cost / algorithm dependent
* not suitable for a LtR scenario involving hundreds of continuous or categorical features

Focus on filter methods
* Allow for a fast pre-processing of the dataset
e Totally independent from the learning process

[GEO3] Isabelle Guyon and Andre Elisseff. An introduction to variable and feature selection. The Journal of Machine Learning
Research, 3:1157-1182, 2003.



GAS [GLQLO7]

* Geng et al. are the first proposing feature selection methods for ranking

* Authors propose to exploit ranking information for selecting features

* They use IR metrics to measure the importance of each feature
 MAP, NDCG: rank instances by feature, evaluate and take the result as importance score

* They use similarities between features to avoid selecting redundant ones
* By using ranking results of each feature: Kendall’s tau, averaged over all queries

* Feature selection as a multi-objective optimization problem: maximum
importance and minimum similarity

* Greedy Search Algorithm (GAS) performs feature selection iteratively

* Update phase needs the tuning of an hyper-parameter ¢ weighting the impact of the
update

[GLQLO7] X. Geng, T. Liu, T. Qin, and H. Li. Feature selection for ranking. In Proc. ACM SIGIR, 2007.



GAS [GLQLO7]

* Experiments
e .gov and TREC 2004 Web Track
 BM25 as first stage
» 44 features per doc

e Evaluation Measures
* MAP
* NDCG

* Applied to second stage ranker
e Ranking SVM
* RankNet
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Fast Feature Selection for LtR [GLNP16]

* Lucchese et al. propose three novel filter methods providing flexible
and model-free feature selection
* Two parameter-free variations of GAS: NGAS and XGAS

e HCAS exploits hierarchic
* Only one feature per gro
* Two variants: Single-linke

* Importance of a feature:
single feature

 Similarity between featL

* No need to tune hyper-

[GLNP16] A. Gigli, C. Lucchese, F. M. Nardini, and R. Perego. Fast feature selection for learning to rank. In Proc. ACM ICTIR, 2016.



Fast Feature Selection for LtR

* Experiments
* MSLR-Web10K (Fold1) and Yahoo LETOR
* By varying the subset sampled
* Results confirms Geng et al. [GLQLO7]

e Evaluation Measures
* NDCG@10

* For small subsets (5%, 10%, 20%):

* Best performance by HCAS with “Single
Linkage”.

 Statistically significant w.r.t. GAS

* Performance against the full model

MSN-1
Subset NMI AGV S K LM-1
5% 0.3548 0.3340 0.3280 0.3313 0.4304
10% 0.3742 0.3416  0.3401 0.3439 0.4310
20% 0.4240 0.3776  0.3526 0.3533 0.4330
30% 0.4625 0.3798 0.4312 0.3556  0.4386
40% 0.4627 0.3850 0.4330 0.3788 0.4513
Full 0.4863 0.4863 0.4863 0.4863 0.4863
MSN-1
Subset NGAS XGAS HCAS HCAS GAS
% p = 0.05 “single” “ward” c = 0.01
5% 0.4011Y 0.43764 [ 0.44234) 0.4289 0.4294
10%  0.4459 0.4528 | 0.46434 | 0.4434Y 0.4515
20% 0.4710 0.4577Y { 0.48704) 0.4820 0.4758
30% 0.4739Y 0.4825 0.4854 0.4879  0.4848
40%  0.4813 0.4834 0.4848 0.4853 0.4863
Full 0.4863 0.4863 0.4863  0.4863 0.4863




Further Reading

* Pan et al. use boosted regression trees to investigate greedy and
randomized wrapper methods [PCA+09].

* Dang and Croft propose a wrapper method that uses best first search and
coordinate ascent to greedily partition a set of features into subsets to be

selected [DC10].

* Hua et al. propose a feature selection method based on clustering: k-
means is first used to aggregate similar features, then the most relevant
feature in each cluster is chosen to form the final set [HZL+10].

. Laloorte et al. [LFC+12] and Lai et al. [LPTY13] use embedded methods for
selecting features and building the ranking model at the same step, by
solving a convex optimization problem.

* Naini and Altingovde use greedy diversification methods to solve the
feature selection problem [NA14].



Optimizing Efficiency within
the Learning Process



Learning to Efficiently Rank [WLM10]

* Wang et al. propose a new cost function for learning models that

directly optimize the tradeoff metrics: Efficiency-Effectiveness
Tradeoff Metric (EET)

EET(Q) = () — MEeET(R) = ZEET

* New efficiency metrics: constant, step, exponential

Constant
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L. Wang, J. Lin, and D. Metzler. Learning to efficiently rank. In Proc. SIGIR 2010. 2% Ranking tme (ms) °° 200



Cost-Sensitive Tree of Classifiers [XKWC13].

e Xu et al. observe that the test-time cost of a classifier is often
dominated by the computation required for feature extraction

* Tree of classifiers: each path extract different featiirac and ic
optimized for a specific sub-partition of th > )

0.735

* Input-dependent feature selection
* Dynamic allocation of time budgets: higher b

—— Stage-wise regression (Friedman, 2001) [

n
* Experiments 3
g —e— Si —sensii ifi
* Yahoo LETOR dataset = b | T oy ent a0 (Cambazogiu e, al 2010

0.715¢ Early exit s=0.3 (Cambazoglu et. al. 2010)|
Early exit s=0.5 (Cambazoglu et. al. 2010
=P Cronus optimized (Chen et. al. 2012)
CSTC w/o fine-tuning

e Comparisons against [CZC+10] 0705 _=8-cste
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Cost x10%

Z. Xu, M. J. Kusner, K. Q. Weinberger, and M. Chen. Cost-sensitive tree of classifiers. In Proc. ICML, 2013.

* Quality vs Cost budget




Training Efficient Tree-Based Models for
Document Ranking [AL13]

Asadi and Lin propose techniques for training GBRTs that have efficient runtime
characteristics.

* compact, shallow, and balanced trees yield faster predictions
Cost-sensitive Tree Induction: jointly minimize the loss and the evaluation cost

Two strategies

* By directly modifying the node splitting criterion during tree induction

* Allow split with maximum gain if it does not increase the maximum depth of the tree

* Find a node closer to the root which, if split, result in a gain larger than the discounted maximum gain
* Pruning while boosting with focus on tree depth and density

* Additional stages compensate for the loss in effectiveness

* Collapse terminal nodes until the number of internal nodes reach a balanced tree

Experiments on MSLR-WEB10K show that the pruning approach is superior.
* 40% decrease in prediction latency with minimal reduction in final NDCG.

N. Asadi and J. Lin. Training efficient tree-based models for document ranking. In Proc. ECIR, 2013.



CLEAVER [LNO+16a]

* Lucchese et al. propose a pruning & re-weighting post-processing
methodology

* Several pruning strategies
* random, last, skip, low weights
 score loss
e quality loss

* Greedy line search strategy applied to tree weights

* Experiments on MART and LambdaMART
* MSLR-Web30K and Istella-S LETOR

C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. Post-learning optimization of tree ensembles for
efficient ranking. In Proc. ACM SIGIR, 2016.



CLEAVER

MART on MSN-1

100 Trees 500 Trees 737 Trees
Strategy Trees | Time | Speed-up | NDCG@10 Trees | Time | Speed-up | NDCG@Q10 Trees | Time | Speed-up | NDCG@10
Reference 100 5.55 - 0.4590 500 19.36 - 0.4749 737 27.46 - 0.4766
RANDOM 40 3.28 1.7x 0.4603 350 14.27 1.4x 0.4756 516 19.64 1.4x 0.4768
LAST 60 3.93 1.4x 0.4601 400 16.17 1.2x 0.4755 590 22.76 1.2x 0.4771
SKIP 30 2.84 2.0x 0.4593 300 12.98 1.5x 0.4749 442 17.25 1.6x 0.4766
_LOW—WMTS 40 3.26 1.7x 0.4609 400 15.75 1.2_X 0.4753 663 &.28 1.1_X 0.4779
r QUALITY-LOSS 30 2.89 1.9x 0.4618 150 7.35 2.6x 0.4752 369 14.42 1.9x 0.4771
SCORE-LOSS 50 | 3.50 1.6x 0.4591 250 | 11.16 T.7x 0.4751 142 | 17.47 1.6x 0.4766
A-MART on Istella
100 Trees 500 Trees 736 Trees
Strategy Trees | Time | Speed-up | NDCG@10 || Trees | Time | Speed-up | NDCG@10 || Trees | Time | Speed-up | NDCG@10
Reference 100 5.37 — 0.6923 500 15.74 — 0.7397 736 20.40 — 0.7432
RANDOM 30 2.65 2.0x 0.7003 250 9.10 1.7x 0.7424 515 14.81 1.4x 0.7449
LAST 70 4.22 1.3x 0.6969 400 13.55 1.2x 0.7418 442 14.09 1.4x 0.7437
SKIP 20 2.36 2.3x 0.6976 250 9.09 1.7x 0.7416 368 11.42 1.8x 0.7438
_LOW—W%TS 30 2.85 1.9x 0.6986 350 11.07 1.4_X 0.7418 589 15.55 1.3x 0.7437
r QUALITY-LOSS 20 2.29 2.3x 0.6989 200 7.83 2.0x 0.7412 442 13.22 1.5x 0.7438
SCORE-LOSS 20 | 2.13 2.5x 0.6976 300 | 10.68 T.5x 0.7407 368 | 12.39 1.6x 0.7433




DART [VGB15]

* Rashmi and Gilad-Bachrach propose to employ dropouts from NN
while learning a MART: DART

* Dropouts as a way to fight over-specialization
» Shrinkage helps but does not solve

 DART differs from MART

 When learning a new tree, a subset of the
model is muted (random)

* Normalization step when adding a new tree
to avoid overshooting T
* mUted trees are Stl” part Of the mOdeI — DART MART without shrinkage —— MART with shrinkage ‘
1E-20 T T

* new tree scaled by a factor of 1/k 1 T ™ -
* k/(k+1) normalization of new and muted Tree index

0.0001

1E-08

1E-12

Average prediction (abs)

R. Korlakai Vinayak and R. Gilad-Bachrach. DART: Dropouts meet Multiple Additive Regression Trees. In PMLR, 2015



DART

* Experiments on ranking/regression/classification tasks
 LambdaMART
* Ranking on the MSLR-Web10K dataset

* NDCG@3

algorithm | Shrinkage | Dropout | Loss function parameter | Feature fraction | NDCG@3
MART 0.4 0 1.2 0.75 46.31
DART 1 0.03 1.2 0.5 46.70




X-DART [LNO+17]

* Lucchese et al. merge DART with pruning while training
* like DART, some trees are muted and this set is actually removed after fitting

* Two good news
e X-DART builds even more compact models than DART
* Smaller models are less prone to overfitting: potential for higher effectiveness

* Three strategies for pruning
* Ratio, Fixed, Adaptive

* Experiments on MSLR-Web30K and Istella-S

* X-DART (adaptive) provide statistically significant
improvements w.r.t. DART

NDCG@10
° °

0.735 . -
DART (100) = AR
| —m— X-DARTF
X-DARTR
0.730
00 200 00 500

300
Ensemble Size (# of trees)

[LNO+17] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, and S. Trani. X-DART: Blending dropout and pruning for efficient
learning to rank. In Proc. ACM SIGIR, 2017.



Approximate Score Computation
and Efficient Cascades



Early Exit Optimizations for Additive Machine
Learned Ranking Systems [CZC+10]

* Why short-circuiting the scoring process in additive ensembles
* For each query, few highly relevant documents and many irrelevant ones
* most users view only the first few result pages

* Cambazoglu et al. introduce additive examples with early exits

i1 £i(di) =1 fi(d)

e O I A e A e ) e I SR AC)

* Four techniques
 Early exits using {Score, Capacity, Rank, Proximity} thresholds

* Evaluation on a state-of-the-art ML platform with GBRT

* With EPT, up to four times faster without loss in quality

[CZC+10] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt. Early exit optimizations for
additive machine learned ranking systems. In Proc. ACM WSDM, 2010.



Efficient Cost-Aware Cascade Ranking in
Multi-Stage Retrieval [CGBC17b]

» Cascade ranking model as a sequence of LtR models (stages)
» ascending order of model complexity, only a fraction of documents in each
stage will advance to the next stage

* Chen et al. revisit the problem on how best to balance feature
importance and feature costs in multi-stage cascade ranking models

* Three cost-aware heuristics to assign features to each stage

 cost-aware L, regularization to learn each stage
* Automatic feature selection while jointly optimize efficiency and effectiveness

* Experiments
* Yahoo! Learning to Rank, gov

e Comparisons against [WLM11b]

[CGBC17b] R. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. Efficient cost-aware cascade ranking in multi-stage retrieval.
In Proc. ACM SIGIR, 2017.



Efficient Cost-Aware Cascade Ranking in
Multi-Stage Retrieval

ERR@k NDCG@k P@k
System @5 @10 @20 @5 @10 @20 @5 @10 @20 Cost
Ground Truth Models
GBDT-BL 0.4605 0.4751 0.4789 0.7448 0.7872 0.8279 0.8323 0.7577 0.5967 15988
GBRT-BL 0.4598 0.4744 0.4782 0.7420 0.7852 0.8264 0.8322 0.7562 0.5962 15876
LambdaMART-BL 0.4526 0.4674 0.4712 0.7314 0.7768 0.8203 0.8330 0.7564 0.5964 15856

Cascade Models (including Baseline) ¢

WLM-BL 0.3679  0.3876 0.3933 0.5886 0.6506 0.7088  0.7832 0.7171 0.5673 99
LM-C3-C 0.3950 0.4127 0.4175 0.6461 0.7067 0.7638 0.8086™*  0.7364**  0.5856™* 1871
LM-C3-E 0.3871  0.4039 0.4089 0.6503 0.7033 0.7618 0.8192**  0.7413**  0.5885™* 1580
LM-C3-F 0.3876  0.4047 0.4093 0.6541 0.7113 0.7666 0.8226™* 0.7483** 0.5915™* 5278
GBDT-C3-C 0.4191 0.4357 0.4405 0.6535 0.7100 0.7631 0.7878* 0.7245**  0.5781** 1760
GBDT-C3-E 0.4264 0.4419 0.4466 0.6721 0.7180 0.7703  0.7942**  0.7241**  0.5778** 1535
GBDT-C3-F 0.4178 0.4350 0.4395 0.6554 0.7163 0.7672  0.7866 0.7310**  0.5819** 4953
GBRT-C3-C 0.4025 0.4203 0.4254 0.6304 0.6931 0.7488 0.7743 0.7168 0.5737** 1760
GBRT-C3-E 0.4100 0.4260 0.4313 0.6380 0.6867 0.7431  0.7697 0.7009 0.5637** 1535
GBRT-C3-F 0.4158 0.4332 0.4378 0.6479 0.7094 0.7612  0.7862 0.7294**  0.5802** 4949

LambdaMART-C3-C  0.4163 0.4332 0.4379 0.6577 0.7145 0.7673  0.7994**  0.7328™  0.5820** 1760
LambdaMART-C3-E  0.4183 0.4346 0.4394 0.6629 0.7133 0.7671 0.7968**  0.7268**  0.5786™* 1535

LambdaMART-C3-F  0.4353 0.4513 0.4557 0.6847 0.7354 0.7851 0.8060**  0.7379**  0.5847**




Further Reading

 Wang et al. [WLM11b] propose a cascade ranking model for efficient
ranked retrieval
* Retrieval as a multi-stage progressive refinement problem, where each stage

considers successively richer and more complex ranking models, but over
successively smaller candidate document sets

* Boosting algorithm (modified AdaRank) to jointly learn the model structure and the
set of documents to prune at each stage

* Experiments show the model is able to simultaneously achieve high effectiveness
and fast retrieval

* Xu et al. [XKW+14a] propose to post-process classifiers to reduce their test
time complexity
* Focus on execution time and feature extraction cost with skewed classes

* Reduction of the average cost of a classifier during test time by an order of
magnitude on real-world Web search ranking data sets

[WLM11b] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked retrieval. In Proc. ACM SIGIR, 2011.
[XKW+14a] Z. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle. Classifier cascades and trees for minimizing
feature evaluation cost. IMLR, 2014.



Efficient Traversal of
Tree-based Models



Efficient Traversal of Tree-based models

* From Yahoo! Learning to Rank
Challenge Overview: “The
winner proposal used a linear
combination of 12 ranking
models, 8 of which were
LambdaMART boosted tree
models, having each up to
3,000 trees” [YLTRC].




If-Then-Else

() a0 1.7,
Need to store the structure of
0.1 the tree L F3
/f(x[ﬁf] <=50.1){ \ / \
// recurses on the left subtree ~
0.1:Fs
}else { High branch misprediction rate
// recurses on the right subtree
if(x[3] <= -3.0) 0 2. C 3.0:F
result = 0.4; " » 2.0 \A) g
else

Low cache hit ratio

\ result =-1.4;
}




Conditional Operators

(D) 50 1.7
Need to store the structure of
0.1 the tree L F3
/ / O\
<
0.1:F¢
Each tree is a weighted nested block of High branch misprediction rate

conditional operators:

O.2:F2 @O | (AN) 3-0:Fs

Low cache hit ratio

(x[4] <=50.1) ? left subtree : right subtree

.




Struct+ [ALdV14]

() s0 1-w
Need to store the structure of
the tree L3
/ \

\

4 I
each node of the tree is
represented by a C++ object
containing the feature id, the
associated threshold and the
left and right subtree
pointers.

N J

[ALdV14] N. Asadi, J. Lin, and A. P. de Vries. Runtime optimizations for tree-based machine learning models. IEEE TKDE, 2014.

High branch misprediction rate

@O | (AN) 3-0:Fs

Low cache hit ratio




VPred [ALdV14]

From control to data dependencies

Output of a test as index to retrieve the
next node to process

The visit is statically un-rolled

16 docs at the same time

double depth4(float* x, Node* nodes) {
int nodeld = 0;
nodeld = nodes->children[x[nodes[nodeld].fid] > nodes[nodeld].theta]
nodeld = nodes->children[x[nodes[nodeld].fid] > nodes[nodeld].theta];
nodeld = nodes->children[x[nodes[nodeld].fid] > nodes[nodeld].theta];
nodeld = nodes->children[x[nodes[nodeld].fid] > nodes[nodeld].theta]
return scores[nodeld];

}

7

7

[ALdV14] N. Asadi, J. Lin, and A. P. de Vries. Runtime optimizations for tree-based machine learning models. IEEE TKDE, 2014.



QuickScorer [LNO+15]

. ‘ 50.1:F4
* Given a document, each
node of a tree can be
classified as True or False 10.1:F: -3.0:F3

* The exit leaf can be

identified by knowing all . o / R
(and only) false nodes of a ‘ 0. L:Es ‘ L O'F

tree 6
* From per-tree scoring to '7_ ' 0.2:F2 a' 3.0:Fsg
per-feature scoring 0 ‘ 3 ‘

* Per-feature linear scan of

thresholds in the forest
of

1 2 4 5

[LNO+15] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Quickscorer: A fast algorithm to
rank documents with additive ensembles of regression trees. In Proc. ACM SIGIR, 2015.



QuickScorer [LNO+15]

e Bitmasks storing leafs
“disappearing” if the
node is False.

« ANDing masks of false 010
nodes lead to the 0 1:F
identification of the exit O
leaf. ol1[1]1]1]1]1]1

* Leftmost bit setto 1 in the
resulting mask.
* Few operations 0 1j0]1]1]1]1

insensitive to node
processing order.




QuickScorer [LNO+15]

e Public datasets: MSLR-Web10K and Yahoo LETOR

* Experiments on LambdaMART models: 1K, 5K, 10K, 20K trees and 8, 16, 32, 64 leaves.
* trained with QuickRank [QR].

Number of trees/dataset
Method A 1,000 5,000 10, 000 20,000
MSN-1 |  YIS1 MSN-1 | YIS1 MSN-1 | YIS1 MSN-1 | YIS1

QS 2.2 (-) 4.3 (-) 10.5 (-) 14.3 (-) 20.0 (-) 25.4 (-) 40.5 (-) 48.1 (-)
VPRED 3 7.9 (3.6x) 8.5 (2.0x) 40.2 (3.8x) 41.6 (2.9x) 80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x) 164.8 (3.4x)
Ir-THEN-ELSE 8.2 (3.7x) | 10.3 (2.4x) 81.0 (7.7x) 85.8 (6.0x) 185.1 (9.3x) 185.8 (7.3x) | 709.0 (17.5x) | 772.2 (16.0x)
STRUCT+ 21.2 (9.6x) | 23.1 (5.4x)| 107.7 (10.3x) 112.6 (7.9x) | 373.7 (18.7x) | 390.8 (15.4x) [ 1150.4 (28.4x) | 1141.6 (23.7x)
QS 2.9 (-) 6.1 (—) 16.2 (-) 22.2 (-) 32.4 (-) 41.2 (-) 67.8 (-) 81.0 (-)
VPRED 16 16.0 (5.5x) | 16.5 (2.7x) 82.4 (5.0x) 82.8 (3.7x) 165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x) 336.1 (4.1x)
Ir-THEN-ELSE 18.0 (6.2x) | 21.8 (3.6x) 126.9 (7.8x) 130.0 (5.8x) | 617.8 (19.0x) 406.6 (9.9x) | 1767.3 (26.0x) | 1711.4 (21.1x)
STRUCTH+ 6 (14,7 4 X 6,2 8.2 8.6 6 9 8.9 90,8 (38.2x X
QS ( 5.2 (-) 9.7 (-) 27.1 (-) 34.3 (-) 59.6 (—) 70.3 (-) 155.8 (—) 160.1 (-)
VPRED 32 31.9 (6.1x) | 31.6 (3.2x) 165.2 (6.0x) 162.2 (4.7x) 343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x) 694.8 (4.3x)
IF-THEN-ELSE 34.5 (6.6x) | 36.2 (3.7x) | 300.9 (11.1x) 277.7 (8.0x) | 1396.8 (23.4x) | 1389.8 (19.8x) | 3179.4 (20.4x) | 3105.2 (19.4x)
STRUCT+ 69.1 (13.3x) | 67.4 (6.9x) | 928.6 (34.2x) | 834.6 (24.3x) | 1806.7 (30.3x) | 1774.3 (25.2x) | 4610.8 (29.6x) | 4332.3 (27.0x)
QS 9.5 () 15.1 (-) 56.3 (—) 66.9 (—) 157.5 (—) 159.4 (-) 425.1 (-) 343.7 (-)
VPRED 64 62.2 (6.5x) | 57.6 (3.8x) 355.2 (6.3x) 334.9 (5.0x) 734.4 (4.7x) 706.8 (4.4x) | 1309.7 (3.0x) | 1420.7 (4.1x)
Ir-THEN-ELSE 55.9 (5.9x) | 55.1 (3.6x)| 933.1 (16.6x) | 935.3 (14.0x) | 2496.5 (15.9x) | 2428.6 (15.2x) | 4662.0 (11.0x) | 4809.6 (14.0x)
STRUCTH 109.8 (11.6x) | 116.8 (7.7x) | 1661.7 (29.5x) | 1554.6 (23.2x) | 3040.7 (19.3x) | 2937.3 (18.4x) | 5437.0 (12.8x) | 5456.4 (15.9x)




Vectorized QuickScorer [LNO+16Db]

Extends QuickScorer by exploiting SIMD capabilities of modern CPUs (SSE 4.2 and AVX 2).
V-QuickScorer exploits 128 bit registers (SSE 4.2) and 256 bit registers (AVX 2) to:

* perform mask computation: with 32 leaves models, 4 docs in parallel (SSE 4.2), 8 docs in parallel (AVX 2).
* perform score computation: with 32 leaves models, 2 docs in parallel (SSE 4.2), 4 docs in parallel (AVX 2).

Tests on MSN10K, Yahoo LETOR and istella datasets.

Experiments on LambdaMART models: 1K, 10K trees and 32, 64 leaves.
* trained with QuickRank [QR].

Number of trees/dataset
A Method 1,000 10,000
MSN-1 | YIS1 | istella MSN-1 | Y!S1 | istella
QS 6.3 () 12.5 (-) 8.9 () 73.7 () 88.7 () 69.9 ()
32 | vQS (SSE 4.2) | 3.2 (2.0x) 5.2 (2.4x) 4.2 (2.1x) 46.2 (1.6x) 53.7 (1.7x) 38.6 (1.8x)
vQS (AVX-2) 2.6 (2.4x) 3.9 (3.2x) 3.1 (2.9x) 39.6 (1.9x) 43.7 (2.0x) 30.7 (2.3x)
QS 11.9 (-) 18.8 (-) 14.3 (-) 183.7 (-) 182.7 (-) 162.2 (-)
64 | vQS (SSE 4.2) | 10.2 (1.2x) 13.9 (1.4x) 11.0 (1.3x) 173.1 (1.1x) 164.3 (1.1x) 132.2 (1.2x)
vQS (AVX-2) 7.9 (1.5x) | 10.5 (1.8x) | 8.0 (1.8x) | 138.2 (1.3x) | 140.0 (1.3x) | 104.2 (1.6x)

[LNO+16b] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. Exploiting CPU SIMD extensions to
speed-up document scoring with tree ensembles. . In Proc. ACM SIGIR, 2016.



Further Reading

* Tang et al. [TJY14] investigates data traversal methods for fast score
calculation with large ensembles of regression trees. Authors propose a 2D
blocking scheme for better cache utilization.

* Introduction of document and tree blocking for a better exploitation of cache layers
of modern CPUs. The technique is used by Lucchese et al. [LNO+15].

 Jinetal. [JYT16] provide an analytical comparison of cache blocking
methods. Moreover, they propose a technique to select a traversal method
and its optimal blocking parameters for effective use of memory hierarchy.

[TJY14] X. Tang, X. Jin, and T. Yang. Cache-conscious runtime optimization for ranking ensembles. In Proc. ACM SIGIR, 2014.
[JYT16] X. Jin, T. Yang, and X. Tang. A comparison of cache blocking methods for fast execution of ensemble-based score
computation. In Proc. ACM SIGIR, 2016.



Thanks a lot for your attention!
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