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Efficiency/Effectiveness	Trade-offs

• Efficiency in Learning to Rank (LtR) has been
addressed in different ways

• Main research lines
• Feature selection
• Optimizing efficiency within the learning process
• Approximate score computation and efficient cascades
• Efficient traversal of tree-based models

• Different impact on the architecture
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ABSTRACT

Retrieval can be made more efficient by deploying dynamic
pruning strategies such as Wand, which do not degrade ef-
fectiveness up to a given rank. It is possible to increase the
efficiency of such techniques by pruning more ‘aggressively’.
However, this may reduce effectiveness. In this work, we
propose a novel selective framework that determines the ap-
propriate amount of pruning aggressiveness on a per-query
basis, thereby increasing overall efficiency without signifi-
cantly reducing overall effectiveness. We postulate two hy-
potheses about the queries that should be pruned more ag-
gressively, which generate two approaches within our frame-
work, based on query performance predictors and query ef-
ficiency predictors, respectively. We thoroughly experiment
to ascertain the efficiency and effectiveness impacts of the
proposed approaches, as part of a search engine deploying
state-of-the-art learning to rank techniques. Our results on
50 million documents of the TREC ClueWeb09 collection
show that by using query efficiency predictors to target in-
efficient queries, we observe that a 36% reduction in mean
response time and a 50% reduction of the response times
experienced by the slowest 10% of queries can be achieved
while still ensuring effectiveness.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage & Retrieval]: Information Search & Retrieval

Keywords: Efficient & Effective Search Engines, Dynamic
Pruning, Learning to Rank, Query Efficiency Prediction

1. INTRODUCTION
Web search engines and other large-scale information re-

trieval (IR) systems are not just concerned with the quality
of search results (also known as effectiveness), but also with
the speed with which the results are obtained (efficiency).
These aspects form a natural tradeoff that all search engines
must address, in that many approaches that increase effec-
tiveness may have a corresponding impact on efficiency due
to their complex nature [35].

Increasingly, search engines deploy learning to rank ap-
proaches, whereby a learned model combines many features
into an effective approach for ranking [20]. Our work is
firmly placed in a learning to rank setting, where a typical
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Figure 1: Phases of retrieval by a search engine.

search engine consists of three phases of operation, as follows
(illustrated in Figure 1):

Top K Retrieval: An initial ranking strategy selects K
documents from the inverted index, identified using a single
feature (often the BM25 weighting model) [7, 20]. Dynamic
pruning strategies such as Wand can be applied to efficiently
generate the set of K results (called the sample [20, 25]).

Feature Extraction: Computation of additional fea-
tures for each document in the sample, such as other weight-
ing models, including those calculated on different fields (an-
chor text, title, etc.) or query independent features (URL
length, PageRank, etc.).

Learned Model Application: Re-ranking of the sample
results by the application of a learned model, obtained by
earlier learning on training data, to increase effectiveness
compared to the sample [20].

The first phase of the retrieval process – where the K
documents of the sample are identified – is data intensive,
and hence, as we will later show, has the largest impact on
efficiency. For this reason, efficient retrieval strategies such
as the Wand dynamic pruning strategy can be deployed.
Indeed, Wand can enhance efficiency by avoiding the scor-
ing of documents that can never be retrieved in the top K
results, without degrading the effectiveness up to rank K,
known as safe-to-rank-K. Wand can be made more efficient
by reducing the number of documents K to be retrieved.
It is possible to further increase the efficiency of Wand by
applying the pruning more aggressively, but at loss of the
guaranteed safeness, with possible degradations in the ef-
fectiveness of the results. The Top K Retrieval phase also
impacts overall effectiveness in two manners: (i) Decreasing
K such that a smaller sample is obtained may miss relevant
documents at deeper ranks, which will have no chance of be-
ing re-ranked towards the top by the learned model, hence
degrading the overall effectiveness of the search engine; (ii)
The pruning aggressiveness used to obtain the sample may
also impact the resulting effectiveness after re-ranking by the
learned model, as the sample is no longer safe-to-rank-K.

In this work, we aim to ensure effective and efficient re-
trieval, by selecting which queries should be pruned more

63



Feature	Selection



Feature	Selection

• Feature	selection	techniques	allows	to	reduce	redundant	features
• Redundant	features	are	useless	both	at	training	and	scoring	time

• Filtering	out	the	irrelevant	features	to	enhance	the	generalization
performance of	the	learned	model
• Identifying	key	features	also	helps	to	reverse	engineer the	predictive	
model	and	to	interpret the	results	obtained
• A	reduced	set	of	highly	discriminative	and	non	redundant	features	
results	in	a	reduced	feature	extraction	cost	and	in	a	faster	learning	
and	classification/prediction/ranking



Feature	Selection	Methods

• Feature	selection	for	ranking	inherits	methods	from	classification
• Classification of feature selection methods [GE03]

• Filtermethods:	feature selection is defined as	a	preprocessing step and can be independent from
learning

• Wrappermethods:	utilizes	a	learning system	as	a	black box	to score	subsets of features
• Embeddedmethods:	perform feature selection within the training	process

• Wrapper or embedded methods:	higher computational cost /	algorithm dependent
• not suitable for	a	LtR scenario involving hundreds of continuous or categorical features

• Focus	on filtermethods
• Allow for	a	fast pre-processing of the dataset
• Totally independent from the learning process

[GE03]	Isabelle	Guyon and	Andre	Elisseff.	An	introduction	to	variable	and	feature	selection.	The	Journal	of	Machine	Learning	
Research,	3:1157–1182,	2003.



GAS	[GLQL07]

• Geng et	al. are	the	first	proposing	feature	selection	methods	for	ranking
• Authors	propose	to	exploit	ranking	information	for	selecting	features

• They	use	IR	metrics	to	measure	the	importance of	each	feature
• MAP,	NDCG:	rank	instances	by	feature,	evaluate	and	take	the	result	as	importance	score

• They	use	similarities between	features	to	avoid	selecting	redundant	ones
• By	using	ranking	results	of	each	feature:	Kendall’s	tau,	averaged	over	all	queries

• Feature	selection	as	a	multi-objective	optimization	problem:	maximum	
importance	and	minimum	similarity
• Greedy	Search	Algorithm	(GAS)	performs	feature	selection	iteratively

• Update	phase	needs	the	tuning	of	an	hyper-parameter	c weighting	the	impact	of	the	
update

[GLQL07]	X.	Geng,	T.	Liu,	T.	Qin,	and	H.	Li.	Feature	selection	for	ranking.	In	Proc.	ACM	SIGIR,	2007.



GAS	[GLQL07]

• Experiments
• .gov and	TREC	2004	Web	Track
• BM25	as	first	stage
• 44	features	per	doc

• Evaluation	Measures
• MAP
• NDCG

• Applied	to	second	stage	ranker
• Ranking	SVM
• RankNet

notion of category in ranking differs, in theory these two methods 
cannot be directly applied to ranking. As approximation, we 
treated “relevant” and “irrelevant” in the .gov data as two 
categories, and treated “definitely relevant,” “possibly relevant,” 
and “not relevant” in the OHSUMED dataset as three categories. 
That is to say, the order information among the “categories” was 
ignored. Note that in practice IG and CHI are directly used as 
feature selection methods in ranking, and such kind of 
approximation is always made. In addition, we also used “With 
All Features (WAF)” as another baseline, in order to show the 
benefit of conducting feature selection. 

4. EXPERIMENTAL RESULTS 

4.1 The .gov data 
Fig.2 shows the performances of the feature selection methods on 
the .gov dataset when they work as preprocessors of Ranking 
SVM. Fig.3 shows the performances when using RankNet as the 
ranking model. In the figures, the x-axis represents the number of 
selected features. 
Let us take Fig.2(a) as example. One can find that by using our 
algorithms (GAS-E and GAS-L), with only six features Ranking 
SVM can achieve the same or even better performances when 
compared with the baseline method WAF.  With more features 
selected, the performances can be further enhanced. In particular, 
when the number of features is 18, the ranking performance 
becomes relatively 15% higher than that of WAF.  
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(b) NDCG@10 of Ranking SVM  

Fig. 2 Ranking accuracy of Ranking SVM with different 
feature selection methods on the .gov dataset 
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(b)  NDCG@10 of RankNet  

Fig. 3 Ranking accuracy of RankNet with different feature 
selection methods on the .gov dataset 

When the number of selected features further increases, the 
performances do not improve, and in some cases, they even 
decrease. This validates the necessity of feature selection: the use 
of more features does not necessarily lead to a higher ranking 
performance. The reason is that when more features are available, 
although the performance on the training set may get better, the 
performance on the test set may deteriorate, due to over-fitting. 
This is a phenomenon widely observed in other learning tasks 
such as classification [7]. Therefore, effective feature selection 
can improve both accuracy and efficiency (it is trivial) of learning 
for ranking. 

Experimental results indicate that in most cases GAS-L can 
outperform GAS-E, although not significantly. Our explanation to 
this is as follows. Since feature selection is used as preprocessing 
of training, it is better to make the feature selection more coherent 
with the ranking model (i.e. GAS-L). The features selected by 
GAS-E may be good in terms of MAP or NDCG; however, they 
might not be good for training the model. Note that the difference 
between GAS-E and CAS-L is small, which does not prevent 
them from both outperforming other feature selection methods. 
Experimental results also indicate that with GAS-L and GAS-E as 
feature selection methods the ranking performances of Ranking 
SVM are more stable than those with IG and CHI as feature 
selection methods. This is particularly true when the number of 
selected features is small. For example, from Fig.2(a) we can see 
that with four features, the MAP values of GAS-L and GAS-E are 
more than 0.3, while those of IG and CHI are only 0.28 and 0.25 
respectively. Furthermore, IG and CHI cannot lead to clearly 
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Fast	Feature	Selection	for	LtR [GLNP16]

• Lucchese et	al.	propose	three	novel	filter	methods	providing	flexible	
and	model-free	feature	selection
• Two	parameter-free	variations	of	GAS:	NGAS	and	XGAS
• HCAS	exploits	hierarchical	agglomerative	clustering	to	minimize	redundancy.

• Only	one	feature	per	group,	i.e.,	the	one	with	highest	importance	score	is	chosen.
• Two	variants:	Single-linkage	and	Ward’s	method.

• Importance	of	a	feature:	NDCG@10	achieved	by	a	LambdaMART on	a	
single	feature
• Similarity	between	features:	Spearman’s	Rank	Correlation.
• No	need	to	tune	hyper-parameters!

[GLNP16]	A.	Gigli,	C.	Lucchese,	F.	M.	Nardini,	and	R.	Perego.	Fast	feature	selection	for	learning	to	rank.	In	Proc.	ACM	ICTIR,	2016.



As LtR algorithm we employed the QuickRank [3] imple-
mentation of LambdaMART [18]. In particular, we trained
and tested LambdaMART models consisting of 100 trees
trained using a learning rate equal to 0.01 and a maximum
tree depth of 4 levels. The training was driven by the opti-
mization of the average Normalized Discounted Cumulative
Gain (NDCG) [9] with cuto↵ at 10 results. The same mea-
sure was used for the evaluation of the FS algorithms on the
test set. We report the results of the models learned on the
subsets of 5%, 10%, 20%, 30%, 40% of the total number of
features available. We also performed a randomization test
[15] to assess if the di↵erences in performance are statisti-
cally significant. We both check i) the statistical significance
of the di↵erence in the performance (average NDCG@10) of
each candidate w.r.t. GAS, and ii) the null hypothesys that
the model produced by using the subset computed by one
of our proposal is better than the one induced by GAS, at
significance levels of 5% and 10%.

3.2 Relevance Measures
Our FS algorithms require the definition of functions r(fi)

and s(fi, fj). Our objective for choosing relevance function
r(fi) is to find a robust correlation measure between fi and
documents’ relevance labels in the training data. We took
into consideration Normalized Mutual Information (NMI),
Spearman’s Rank (S), Kendall’s ⌧ (K) and Average Group
Variance (AGV) [16, 1, 2]. Finally, we measured the rele-
vance of a feature fi by the average NDCG@10 achieved by
a LambdaMART model trained on the single feature fi. We
name this strategy LM-1. The higher the values of NMI, S,
K, LM-1 the higher the relevance of the feature analyzed,
and conversely for AGV.

We assess all the above feature relevance measures by
considering the ranking quality (i.e., measured in terms of
NDCG@10 on the test set) achieved by LambdaMART mod-
els learned on the subsets of top-ranked features selected by
the di↵erent measures.

Results reported in Table 1 show that LM-1 is the rel-
evance measure globally providing the best performance in
terms of NDCG@10 on bothMSN-1 and Y!S1 datasets. Geng
et al. report a similar result on di↵erent datasets [5]. On

Table 1: Quality induced by di↵erent feature rele-
vance functions measured in terms of NDCG@10.

Y!S1

Subset NMI AGV S K LM-1

5% 0.7549 0.7552 0.7523 0.7541 0.7545
10% 0.7582 0.7578 0.7575 0.7560 0.7622
20% 0.7641 0.7664 0.7652 0.7663 0.7717
30% 0.7654 0.7717 0.7722 0.7688 0.7734
40% 0.7686 0.7720 0.7719 0.7705 0.7748
Full 0.7753 0.7753 0.7753 0.7753 0.7753

MSN-1

Subset NMI AGV S K LM-1

5% 0.3548 0.3340 0.3280 0.3313 0.4304
10% 0.3742 0.3416 0.3401 0.3439 0.4310
20% 0.4240 0.3776 0.3526 0.3533 0.4330
30% 0.4625 0.3798 0.4312 0.3556 0.4386
40% 0.4627 0.3850 0.4330 0.3788 0.4513
Full 0.4863 0.4863 0.4863 0.4863 0.4863

MSN-1 data, LM-1 is a good relevance predictor in partic-
ular when the subset of the selected features is small. On
the same dataset, results show that AGV, S, and K are not
competitive as feature relevance estimators with significant
di↵erences w.r.t. LM-1. In the rest of the analysis we thus
use LM-1 as the relevance measure r(fi) employed by all the
FS algorithms.

Regarding feature similarity s(fi, fj), Geng et al. exploit
the Kendall’s ⌧ computed between lists of results produced
by two LtR models trained on two di↵erent features, i.e.,
fi and fj [5]. Di↵erently from them, we exploit the Spear-
man’s rank correlation coe�cient as feature similarity func-
tion s(fi, fj). This measure fits well a ranking scenario and
it is much more e�cient to be computed than other mea-
sures such as Kendall’s ⌧ and Normalized Mutual Informa-
tion while producing similar results. For lack of space we do
not report the results confirming this behavior.

3.3 Effectiveness Evaluation
We evaluated the e↵ectiveness of our proposed FS algo-

rithms against GAS by measuring the quality of ranking
models trained after feature selection. The best FS algo-
rithm for a given size of the subset of features is the one
causing the smallest quality loss w.r.t. to the model built on
the full feature set F .

XGAS and GAS algorithms require the tuning of the hyper-
parameter p and c, respectively. We tune these parameters
by applying a bisection method in the range [0, 1]. Dur-
ing each search step, the selected features are evaluated by
training a new LtR model with those features and measur-
ing its performance on the validation set. Bisection process
continues until no significant improvement is observed on
the resulting model.

Table 2: Performance of FS algorithms in terms
of NDCG@10 of the induced model. Statistically
significant di↵erences against GAS are highligthed
with MO (increment/decrement) at 10% significance
level and NH (increment/decrement) at 5% signifi-
cance level.

Y!S1

Subset NGAS XGAS HCAS HCAS GAS

% p = 0.8 “single” “ward” c = 0.01

5% 0.7430H 0.7655 0.7349H 0.7571O 0.7628

10% 0.7601 0.7666 0.7635 0.7626 0.7649

20% 0.7672 0.7723 0.7666 0.7704 0.7671

30% 0.7717 0.7742 0.7738 0.7743 0.7730

40% 0.7724 0.7751 0.7742 0.7755 0.7737

Full 0.7753 0.7753 0.7753 0.7753 0.7753

MSN-1

Subset NGAS XGAS HCAS HCAS GAS

% p = 0.05 “single” “ward” c = 0.01

5% 0.4011H 0.4376N 0.4423N 0.4289 0.4294

10% 0.4459 0.4528 0.4643N 0.4434H 0.4515

20% 0.4710 0.4577H 0.4870N 0.4820 0.4758

30% 0.4739H 0.4825 0.4854 0.4879 0.4848

40% 0.4813 0.4834 0.4848 0.4853 0.4863

Full 0.4863 0.4863 0.4863 0.4863 0.4863
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Fast	Feature	Selection	for	LtR

• Experiments
• MSLR-Web10K	(Fold1)	and	Yahoo	LETOR
• By	varying	the	subset	sampled
• Results	confirms	Geng et	al.	[GLQL07]

• Evaluation	Measures
• NDCG@10

• For	small	subsets	(5%,	10%,	20%):
• Best	performance	by	HCAS	with	“Single	
Linkage”.

• Statistically	significant	w.r.t.	GAS
• Performance	against	the	full	model
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Full 0.7753 0.7753 0.7753 0.7753 0.7753

MSN-1

Subset NMI AGV S K LM-1

5% 0.3548 0.3340 0.3280 0.3313 0.4304
10% 0.3742 0.3416 0.3401 0.3439 0.4310
20% 0.4240 0.3776 0.3526 0.3533 0.4330
30% 0.4625 0.3798 0.4312 0.3556 0.4386
40% 0.4627 0.3850 0.4330 0.3788 0.4513
Full 0.4863 0.4863 0.4863 0.4863 0.4863

MSN-1 data, LM-1 is a good relevance predictor in partic-
ular when the subset of the selected features is small. On
the same dataset, results show that AGV, S, and K are not
competitive as feature relevance estimators with significant
di↵erences w.r.t. LM-1. In the rest of the analysis we thus
use LM-1 as the relevance measure r(fi) employed by all the
FS algorithms.

Regarding feature similarity s(fi, fj), Geng et al. exploit
the Kendall’s ⌧ computed between lists of results produced
by two LtR models trained on two di↵erent features, i.e.,
fi and fj [5]. Di↵erently from them, we exploit the Spear-
man’s rank correlation coe�cient as feature similarity func-
tion s(fi, fj). This measure fits well a ranking scenario and
it is much more e�cient to be computed than other mea-
sures such as Kendall’s ⌧ and Normalized Mutual Informa-
tion while producing similar results. For lack of space we do
not report the results confirming this behavior.

3.3 Effectiveness Evaluation
We evaluated the e↵ectiveness of our proposed FS algo-

rithms against GAS by measuring the quality of ranking
models trained after feature selection. The best FS algo-
rithm for a given size of the subset of features is the one
causing the smallest quality loss w.r.t. to the model built on
the full feature set F .

XGAS and GAS algorithms require the tuning of the hyper-
parameter p and c, respectively. We tune these parameters
by applying a bisection method in the range [0, 1]. Dur-
ing each search step, the selected features are evaluated by
training a new LtR model with those features and measur-
ing its performance on the validation set. Bisection process
continues until no significant improvement is observed on
the resulting model.

Table 2: Performance of FS algorithms in terms
of NDCG@10 of the induced model. Statistically
significant di↵erences against GAS are highligthed
with MO (increment/decrement) at 10% significance
level and NH (increment/decrement) at 5% signifi-
cance level.

Y!S1

Subset NGAS XGAS HCAS HCAS GAS

% p = 0.8 “single” “ward” c = 0.01

5% 0.7430H 0.7655 0.7349H 0.7571O 0.7628

10% 0.7601 0.7666 0.7635 0.7626 0.7649

20% 0.7672 0.7723 0.7666 0.7704 0.7671

30% 0.7717 0.7742 0.7738 0.7743 0.7730

40% 0.7724 0.7751 0.7742 0.7755 0.7737

Full 0.7753 0.7753 0.7753 0.7753 0.7753

MSN-1

Subset NGAS XGAS HCAS HCAS GAS

% p = 0.05 “single” “ward” c = 0.01

5% 0.4011H 0.4376N 0.4423N 0.4289 0.4294

10% 0.4459 0.4528 0.4643N 0.4434H 0.4515

20% 0.4710 0.4577H 0.4870N 0.4820 0.4758

30% 0.4739H 0.4825 0.4854 0.4879 0.4848

40% 0.4813 0.4834 0.4848 0.4853 0.4863

Full 0.4863 0.4863 0.4863 0.4863 0.4863
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Further	Reading

• Pan	et	al. use	boosted	regression	trees	to	investigate	greedy	and	
randomized	wrapper	methods	[PCA+09].
• Dang	and	Croft	propose	a	wrapper	method	that	uses	best	first	search	and	
coordinate	ascent	to	greedily	partition	a	set	of	features	into	subsets	to	be	
selected	[DC10].
• Hua	et	al. propose	a	feature	selection	method	based	on	clustering:	k-
means	is	first	used	to	aggregate	similar	features,	then	the	most	relevant	
feature	in	each	cluster	is	chosen	to	form	the	final	set	[HZL+10].
• Laporte et	al.	[LFC+12]	and	Lai	et	al. [LPTY13]	use	embedded	methods	for	
selecting	features	and	building	the	ranking	model	at	the	same	step,	by	
solving	a	convex	optimization	problem.
• Naini and	Altingovde use	greedy	diversification	methods	to	solve	the	
feature	selection	problem	[NA14].



Optimizing	Efficiency	within	
the	Learning	Process



Learning	to	Efficiently	Rank	[WLM10]

• Wang	et	al. propose a	new	cost	function	for	learning	models	that	
directly	optimize	the	tradeoff	metrics:	Efficiency-Effectiveness	
Tradeoff	Metric	(EET)

L.	Wang,	J.	Lin,	and	D.	Metzler.	Learning	to	efficiently	rank.	In	Proc.	SIGIR	2010.

• New	efficiency	metrics:	constant,	step,	exponential
• Focus	on	linear	feature-based	ranking	functions
• Learned	functions	show	significant decreased	
average	query	execution	times



Cost-Sensitive	Tree	of	Classifiers	[XKWC13].

• Xu	et	al. observe	that	the	test-time	cost	of	a	classifier	is	often	
dominated	by	the	computation	required	for	feature	extraction
• Tree	of	classifiers:	each	path	extract	different	features	and	is	
optimized	for	a	specific	sub-partition	of	the	space
• Input-dependent	feature	selection
• Dynamic	allocation	of	time	budgets:	higher	budgets	for	infrequent	paths

• Experiments
• Yahoo	LETOR	dataset
• Quality	vs	Cost	budget

• Comparisons	against	[CZC+10]

Z.	Xu,	M.	J.	Kusner,	K.	Q.	Weinberger,	and	M.	Chen.	Cost-sensitive	tree	of	classifiers.	In	Proc.	ICML,	2013.



Training	Efficient	Tree-Based	Models	for	
Document	Ranking	[AL13]
• Asadi and	Lin	propose	techniques	for	training	GBRTs	that	have	efficient	runtime	
characteristics.
• compact,	shallow,	and	balanced trees	yield	faster	predictions

• Cost-sensitive	Tree	Induction:	jointly	minimize	the	loss	and	the	evaluation	cost
• Two	strategies

• By	directly	modifying	the	node	splitting	criterion	during	tree	induction
• Allow	split	with	maximum	gain	if	it	does	not	increase	the	maximum	depth	of	the	tree
• Find	a	node	closer	to	the	root	which,	if	split,	result	in	a	gain	larger	than	the	discounted	maximum	gain

• Pruning	while	boosting	with	focus	on	tree	depth and	density
• Additional	stages	compensate	for	the	loss	in	effectiveness
• Collapse	terminal	nodes	until	the	number	of	internal	nodes	reach	a	balanced	tree

• Experiments	on	MSLR-WEB10K	show	that	the	pruning approach	is	superior.
• 40%	decrease	in	prediction	latency	with	minimal	reduction	in	final	NDCG.

N.	Asadi and	J.	Lin.	Training	efficient	tree-based	models	for	document	ranking.	In	Proc.	ECIR,	2013.



CLEAVER	[LNO+16a]

• Lucchese et	al.	propose	a	pruning	&	re-weighting	post-processing	
methodology
• Several	pruning	strategies

• random,	last,	skip,	low	weights
• score	loss
• quality	loss

• Greedy	line	search	strategy	applied	to	tree	weights
• Experiments	on	MART	and	LambdaMART

• MSLR-Web30K	and	Istella-S	LETOR

C.	Lucchese,	F.	M.	Nardini,	S.	Orlando,	R.	Perego,	F.	Silvestri,	and	S.	Trani.	Post-learning	optimization	of	tree	ensembles	for	
efficient	ranking.	In	Proc.	ACM	SIGIR,	2016.



CLEAVER
Table 1: Comparison of CLEaVER pruning strategies against the reference models. Pruned forest size,

document scoring time (µs), and NDCG@10 are reported for each of the pruned models.

MART on MSN-1

100 Trees 500 Trees 737 Trees

Strategy Trees Time Speed-up NDCG@10 Trees Time Speed-up NDCG@10 Trees Time Speed-up NDCG@10

Reference 100 5.55 – 0.4590 500 19.36 – 0.4749 737 27.46 – 0.4766

Random 40 3.28 1.7x 0.4603 350 14.27 1.4x 0.4756 516 19.64 1.4x 0.4768

Last 60 3.93 1.4x 0.4601 400 16.17 1.2x 0.4755 590 22.76 1.2x 0.4771

Skip 30 2.84 2.0x 0.4593 300 12.98 1.5x 0.4749 442 17.25 1.6x 0.4766

Low-Weights 40 3.26 1.7x 0.4609 400 15.75 1.2x 0.4753 663 25.28 1.1x 0.4779

Quality-Loss 30 2.89 1.9x 0.4618 150 7.35 2.6x 0.4752 369 14.42 1.9x 0.4771

Score-Loss 50 3.50 1.6x 0.4591 250 11.16 1.7x 0.4751 442 17.47 1.6x 0.4766

�-MART on Istella

100 Trees 500 Trees 736 Trees

Strategy Trees Time Speed-up NDCG@10 Trees Time Speed-up NDCG@10 Trees Time Speed-up NDCG@10

Reference 100 5.37 – 0.6923 500 15.74 – 0.7397 736 20.40 – 0.7432

Random 30 2.65 2.0x 0.7003 250 9.10 1.7x 0.7424 515 14.81 1.4x 0.7449

Last 70 4.22 1.3x 0.6969 400 13.55 1.2x 0.7418 442 14.09 1.4x 0.7437

Skip 20 2.36 2.3x 0.6976 250 9.09 1.7x 0.7416 368 11.42 1.8x 0.7438

Low-Weights 30 2.85 1.9x 0.6986 350 11.07 1.4x 0.7418 589 15.55 1.3x 0.7437

Quality-Loss 20 2.29 2.3x 0.6989 200 7.83 2.0x 0.7412 442 13.22 1.5x 0.7438

Score-Loss 20 2.13 2.5x 0.6976 300 10.68 1.5x 0.7407 368 12.39 1.6x 0.7433

show a statistical equivalence when dealing with forests of
500 or more trees. On the other hand, they prove that the
improvement of the pruned model w.r.t. the reference one
when dealing with 100-tree models is statistically significant.
Smaller models, whose quality is still far from optimal, can
greatly benefit from the line search optimization, which can
also better deal with a low-dimensional search space.

To confirm the e↵ectiveness of CLEaVER we also per-
formed the following experiment. We allowed pruning as
long as no statistically significance di↵erence w.r.t. the ref-

erence model is observed. In this setting, CLEaVER pro-
vides an even further improvement on the largest models:
70% pruning (221 trees) with Quality-Loss on MSN-1 and
60% (294 trees) with Skip on Istella, corresponding to a scor-
ing speed-up of 2.9x and 2.1x respectively.

An important outcome of this work is that, in order to
build a model with a given number of trees, we found to be
best performing to use CLEaVER to prune a large model
than to exploit line search optimization only. As an example,
a �-MART model with 100 trees on Istella dataset provides
an NDCG@10 of 0.6923 and of 0.7085 after line search re-
weighting. Instead, by pruning a larger model of 500 trees
with the Quality-Loss strategy, CLEaVER produces a
model providing an outstanding NDCG@10 of 0.7329.

4. CONCLUSION AND FUTURE WORK
We proposed a novel algorithm, named CLEaVER, which

is able to improve the e�ciency of a given ensemble-based
model. CLEaVER, first removes the less relevant elements
in the ensemble according to their expected impact, then
fine-tunes the weights of the remaining ones through line
search. Eventually, CLEaVER provides a smaller and more
e�cient model with at least the same quality as the origi-
nal one. In our experiments, CLEaVER allowed to built
models being more than twice as fast. As future work we
intend to integrate CLEaVER in several ensemble learning
algorithms to systematically prune and improve the mod-
els while being generated. We also believe CLEaVER can
be successfully extended to non tree-based ensembles and

applied to other tasks than document ranking.
Acknowledgments. This work was partially supported by
the EC H2020 Program INFRAIA-1-2014-2015 SoBigData:
Social Mining & Big Data Ecosystem (654024).
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DART	[VGB15]

• Rashmi	and	Gilad-Bachrach propose	to	employ	dropouts from	NN		
while	learning	a	MART:	DART
• Dropouts	as	a	way	to	fight	over-specialization
• Shrinkage	helps	but	does	not	solve

R.	Korlakai Vinayak and	R.	Gilad-Bachrach.	DART:	Dropouts	meet	Multiple	Additive	Regression	Trees.	In	PMLR,	2015

• DART	differs	from	MART
• When	learning	a	new	tree,	a	subset	of	the	
model	is	muted	(random)

• Normalization	step	when	adding	a	new	tree	
to	avoid	overshooting
• muted	trees	are	still	part	of	the	model
• new	tree	scaled	by	a	factor	of	1/k
• k/(k+1) normalization	of	new	and	muted

491



DART: Dropouts meet Multiple Additive Regression Trees

Parameter MART DART

Shrinkage 0.05, 0.1, 0.2, 0.4 -

Dropout rate - ", 0.015, 0.03, 0.045

Number of trees 100

Leaves per tree 40

Loss function parameter 0.2,0.4,0.6,0.8,1,1.2

Fraction of features scanned per leaf 0.5, 0.75, 1.0

Table 1: Parameter values scanned for the ranking task.

algorithm Shrinkage Dropout Loss function parameter Feature fraction NDCG@3

MART 0.4 0 1.2 0.75 46.31

DART 1 0.03 1.2 0.5 46.70

Table 2: NDCG scores for MART and DART on the ranking task. For NDCG scores, higher is better.

Algorithm 1 The DART algorithm

Let N be the total number of trees to be added to
the ensemble
S1  {x,�L0

x

(0)}
T1 be a tree trained on the dataset S1

M  {T1}
for t = 2, . . . , N do

D  the subset of M such that T 2 M is in D

with probability p

drop

if D = ; then D  a random element from M

end if

M̂  M \D
S

t

 
n

x,�L0
x

⇣

M̂(x)
⌘o

T

t

be a tree trained on the dataset S
t

M  M [
n

Tt
|D|+1

o

for T 2 D do

Multiply T in M by a factor of |D|
|D|+1

end for

end for

Output M

WEB10K dataset.4 This dataset contains ⇠ 1.2M
query-URL pairs for 10K di↵erent queries and the task
is to rank the URLs for each query according to their
relevance using the 136 available features.

The dataset is partitioned into five parts such that 60%
of the data is used for training, 20% is used for val-
idation, and 20% for testing. We scanned the values
of various parameters for both algorithms by training
on the training data and comparing their performance
on the validation data. We selected the best perform-
ing models based on their scores on the validation set,
and applied them to the test set to obtain the reported
results. The di↵erent parameters scanned are summa-
rized in Table 1. For each of the parameter combi-
nations experimented, we computed the NDCG score
at position 3 and used this as the metric for selecting
the parameter values. NDCG (Burges et al., 2005) is
a common metric used to evaluate web-ranking tasks.
Moreover, the loss functions used were designed to op-
timize this metric (Burges, 2010).

Table 2 presents the main results for the ranking task.
DART gains ⇠ 0.4 NDCG points over MART. More-
over, when checking the NDCG scores at positions 1
and 2 we see significant gains as well (0.2 points gain
in position 1 and 0.38 points gain in position 2). To
put this observed improvement in perspective, in the
Yahoo! learning to rank challenge, the gap, in terms of
NDCG, between the winners and the team who ranked
5th was 0.35 points (Chapelle and Chang, 2011).

4
http://research.microsoft.com/en-us/projects/

mslr/default.aspx
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DART

• Experiments	on	ranking/regression/classification	tasks
• LambdaMART
• Ranking	on	the	MSLR-Web10K	dataset
• NDCG@3



X-DART	[LNO+17]

• Lucchese et	al.merge	DART	with	pruning	while	training
• like	DART,	some	trees	are	muted	and	this	set	is	actually	removed	after	fitting

• Two	good	news
• X-DART	builds	even	more	compact	models	than	DART
• Smaller	models	are	less	prone	to	overfitting:	potential	for	higher	effectiveness

• Three	strategies	for	pruning
• Ratio,	Fixed,	Adaptive

[LNO+17]	C.	Lucchese,	F.	M.	Nardini,	S.	Orlando,	R.	Perego,	and	S.	Trani.	X-DART:	Blending	dropout	and	pruning	for	efficient	
learning	to	rank.	In	Proc.	ACM	SIGIR,	2017.

• Experiments	on	MSLR-Web30K	and	Istella-S
• X-DART	(adaptive)	provide	statistically	significant	
improvements	w.r.t.	DART



Approximate	Score	Computation	
and	Efficient	Cascades



Early	Exit	Optimizations	for	Additive	Machine	
Learned	Ranking	Systems	[CZC+10]
• Why	short-circuiting	the	scoring	process	in	additive	ensembles

• For	each	query,	few	highly	relevant	documents	and	many	irrelevant	ones
• most	users	view	only	the	first	few	result	pages

• Cambazoglu et	al. introduce	additive	examples	with	early	exits

• Four	techniques
• Early	exits	using	{Score,	Capacity,	Rank,	Proximity}	thresholds

• Evaluation	on	a	state-of-the-art	ML	platform	with	GBRT
• With	EPT,	up	to	four	times	faster	without	loss	in	quality

[CZC+10]	B.	B.	Cambazoglu,	H.	Zaragoza,	O.	Chapelle,	J.	Chen,	C.	Liao,	Z.	Zheng,	and	J.	Degenhardt.	Early	exit	optimizations	for	
additive	machine	learned	ranking	systems.	In	Proc.	ACM	WSDM,	2010.



Efficient	Cost-Aware	Cascade	Ranking	in	
Multi-Stage	Retrieval	[CGBC17b]
• Cascade	ranking	model	as	a	sequence	of	LtR models	(stages)

• ascending	order	of	model	complexity,	only	a	fraction	of	documents	in	each	
stage	will	advance	to	the	next	stage

• Chen	et	al.	revisit	the	problem	on	how	best	to	balance	feature	
importance	and	feature	costs	in	multi-stage	cascade	ranking	models
• Three	cost-aware	heuristics	to	assign	features	to	each	stage
• cost-aware	L11	regularization	to	learn	each	stage

• Automatic	feature	selection	while	jointly	optimize	efficiency	and	effectiveness

• Experiments
• Yahoo!	Learning	to	Rank,	gov

• Comparisons	against	[WLM11b]
[CGBC17b]	R.	Chen,	L.	Gallagher,	R.	Blanco,	and	J.	S.	Culpepper.	Efficient	cost-aware	cascade	ranking	in	multi-stage	retrieval.	
In	Proc.	ACM	SIGIR,	2017.



Efficient	Cost-Aware	Cascade	Ranking	in	
Multi-Stage	Retrieval



Further	Reading

• Wang	et	al. [WLM11b]	propose	a	cascade	ranking	model	for	efficient	
ranked	retrieval
• Retrieval	as	a	multi-stage	progressive	refinement	problem,	where	each	stage	
considers	successively	richer	and	more	complex	ranking	models,	but	over	
successively	smaller	candidate	document	sets

• Boosting	algorithm	(modified	AdaRank)	to	jointly	learn	the	model	structure	and	the	
set	of	documents	to	prune	at	each	stage

• Experiments	show	the	model	is	able	to	simultaneously	achieve	high	effectiveness	
and	fast	retrieval

• Xu	et	al. [XKW+14a]	propose	to	post-process	classifiers	to	reduce	their	test	
time	complexity
• Focus	on	execution	time	and	feature	extraction	cost	with	skewed	classes
• Reduction	of	the	average	cost	of	a	classifier	during	test	time	by	an	order	of	
magnitude	on	real-world	Web	search	ranking	data	sets

[WLM11b]	L.	Wang,	J.	Lin,	and	D.	Metzler.	A	cascade	ranking	model	for	efficient	ranked	retrieval.	In	Proc.	ACM	SIGIR,	2011.
[XKW+14a]	Z.	Xu,	M.	J.	Kusner,	K.	Q.	Weinberger,	M.	Chen,	and	O.	Chapelle.	Classifier	cascades	and	trees	for	minimizing	
feature	evaluation	cost.	JMLR,	2014.



Efficient	Traversal	of
Tree-based	Models



Efficient	Traversal	of	Tree-based	models

• From	Yahoo!	Learning	to	Rank	
Challenge	Overview:	“The	
winner	proposal	used	a	linear	
combination	of	12	ranking	
models,	8	of	which	were	
LambdaMART boosted	tree	
models,	having	each	up	to	
3,000	trees”	[YLTRC].
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If-Then-Else
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Need	to	store	the	structure	of	
the	tree

High	branch	misprediction	rate

Low	cache	hit	ratio

if	(x[4]	<=	50.1)	{
//	recurses	on	the	left	subtree
…

}	else	{
//	recurses	on	the	right	subtree
if(x[3]	<=	-3.0)

result	=	0.4;
else	

result	=	-1.4;
}



Conditional	Operators
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Each	tree	is	a	weighted	nested	block	of	
conditional	operators:

(x[4]	<=	50.1)	? left	subtree :	right	subtree



Struct+	[ALdV14]
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each	node	of	the	tree	is	
represented	by	a	C++	object	
containing	the	feature	id,	the	
associated	threshold and	the	
left and	right subtree
pointers.

[ALdV14]	N.	Asadi,	J.	Lin,	and	A.	P.	de	Vries.	Runtime	optimizations	for	tree-based	machine	learning	models.	IEEE	TKDE,	2014.



VPred [ALdV14]
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double	depth4(float*	x,	Node*	nodes)	{
int	nodeId	=	0;
nodeId	=	nodes->children[x[nodes[nodeId].fid]	>	nodes[nodeId].theta];
nodeId	=	nodes->children[x[nodes[nodeId].fid]	>	nodes[nodeId].theta];
nodeId	=	nodes->children[x[nodes[nodeId].fid]	>	nodes[nodeId].theta];
nodeId	=	nodes->children[x[nodes[nodeId].fid]	>	nodes[nodeId].theta];
return	scores[nodeId];
}

• From	control to	data	dependencies
• Output	of	a	test	as	index	to	retrieve	the	
next	node	to	process

• The	visit	is	statically	un-rolled
• 16	docs	at	the	same	time

[ALdV14]	N.	Asadi,	J.	Lin,	and	A.	P.	de	Vries.	Runtime	optimizations	for	tree-based	machine	learning	models.	IEEE	TKDE,	2014.



QuickScorer [LNO+15]
• Given	a	document,	each	
node	of	a	tree	can	be	
classified	as	True or	False

• The	exit	leaf	can	be	
identified	by	knowing	all	
(and	only)	false	nodes	of	a	
tree

• From	per-tree	scoring	to	
per-feature	scoring
• Per-feature	linear	scan	of	
thresholds	in	the	forest
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[LNO+15]	C.	Lucchese,	F.	M.	Nardini,	S.	Orlando,	R.	Perego,	N.	Tonellotto,	and	R.	Venturini.	Quickscorer:	A	fast	algorithm	to	
rank	documents	with	additive	ensembles	of	regression	trees.	In	Proc.	ACM	SIGIR,	2015.



QuickScorer [LNO+15]
• Bitmasks	storing	leafs	
“disappearing”	if	the	
node	is	False.

• ANDing masks	of	false	
nodes	lead	to	the	
identification	of	the	exit	
leaf.
• Leftmost	bit	set	to	1	in	the	

resulting	mask.

• Few	operations	
insensitive	to	node	
processing	order.
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QuickScorer [LNO+15]

Table 2: Per-document scoring time in µs of QS, VPred, If-Then-Else and Struct+ on MSN-1 and Y!S1
datasets. Gain factors are reported in parentheses.

Method ⇤

Number of trees/dataset

1, 000 5, 000 10, 000 20, 000

MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1 MSN-1 Y!S1

QS

8

2.2 (–) 4.3 (–) 10.5 (–) 14.3 (–) 20.0 (–) 25.4 (–) 40.5 (–) 48.1 (–)

VPred 7.9 (3.6x) 8.5 (2.0x) 40.2 (3.8x) 41.6 (2.9x) 80.5 (4.0x) 82.7 (3.3) 161.4 (4.0x) 164.8 (3.4x)

If-Then-Else 8.2 (3.7x) 10.3 (2.4x) 81.0 (7.7x) 85.8 (6.0x) 185.1 (9.3x) 185.8 (7.3x) 709.0 (17.5x) 772.2 (16.0x)

Struct+ 21.2 (9.6x) 23.1 (5.4x) 107.7 (10.3x) 112.6 (7.9x) 373.7 (18.7x) 390.8 (15.4x) 1150.4 (28.4x) 1141.6 (23.7x)

QS

16

2.9 (–) 6.1 (–) 16.2 (–) 22.2 (–) 32.4 (–) 41.2 (–) 67.8 (–) 81.0 (–)

VPred 16.0 (5.5x) 16.5 (2.7x) 82.4 (5.0x) 82.8 (3.7x) 165.5 (5.1x) 165.2 (4.0x) 336.4 (4.9x) 336.1 (4.1x)

If-Then-Else 18.0 (6.2x) 21.8 (3.6x) 126.9 (7.8x) 130.0 (5.8x) 617.8 (19.0x) 406.6 (9.9x) 1767.3 (26.0x) 1711.4 (21.1x)

Struct+ 42.6 (14.7x) 41.0 (6.7x) 424.3 (26.2x) 403.9 (18.2x) 1218.6 (37.6x) 1191.3 (28.9x) 2590.8 (38.2x) 2621.2 (32.4x)

QS

32

5.2 (–) 9.7 (–) 27.1 (–) 34.3 (–) 59.6 (–) 70.3 (–) 155.8 (–) 160.1 (–)

VPred 31.9 (6.1x) 31.6 (3.2x) 165.2 (6.0x) 162.2 (4.7x) 343.4 (5.7x) 336.6 (4.8x) 711.9 (4.5x) 694.8 (4.3x)

If-Then-Else 34.5 (6.6x) 36.2 (3.7x) 300.9 (11.1x) 277.7 (8.0x) 1396.8 (23.4x) 1389.8 (19.8x) 3179.4 (20.4x) 3105.2 (19.4x)

Struct+ 69.1 (13.3x) 67.4 (6.9x) 928.6 (34.2x) 834.6 (24.3x) 1806.7 (30.3x) 1774.3 (25.2x) 4610.8 (29.6x) 4332.3 (27.0x)

QS

64

9.5 (–) 15.1 (–) 56.3 (–) 66.9 (–) 157.5 (–) 159.4 (–) 425.1 (–) 343.7 (–)

VPred 62.2 (6.5x) 57.6 (3.8x) 355.2 (6.3x) 334.9 (5.0x) 734.4 (4.7x) 706.8 (4.4x) 1309.7 (3.0x) 1420.7 (4.1x)

If-Then-Else 55.9 (5.9x) 55.1 (3.6x) 933.1 (16.6x) 935.3 (14.0x) 2496.5 (15.9x) 2428.6 (15.2x) 4662.0 (11.0x) 4809.6 (14.0x)

Struct+ 109.8 (11.6x) 116.8 (7.7x) 1661.7 (29.5x) 1554.6 (23.2x) 3040.7 (19.3x) 2937.3 (18.4x) 5437.0 (12.8x) 5456.4 (15.9x)

same trivially holds for Struct+. This means that the in-
terleaved traversal strategy ofQS needs to process less nodes
than in a traditional root-to-leaf visit. This mostly explains
the results achieved by QS.

As far as number of branches is concerned, we note that,
not surprisingly, QS and VPred are much more e�cient
than If-Then-Else and Struct+ with this respect. QS

has a larger total number of branches than VPred, which
uses scoring functions that are branch-free. However, those
branches are highly predictable, so that the mis-prediction
rate is very low, thus, confirming our claims in Section 3.

Observing again the timings in Table 2 we notice that, by
fixing the number of leaves, we have a super-linear growth
of QS’s timings when increasing the number of trees. For
example, since on MSN-1 with ⇤ = 64 and 1, 000 trees QS

scores a document in 9.5 µs, one would expect to score a
document 20 times slower, i.e., 190 µs, when the ensemble
size increases to 20, 000 trees. However, the reported timing
of QS in this setting is 425.1 µs, i.e., roughly 44 times slower
than with 1000 trees. This e↵ect is observable only when the
number of leaves ⇤ = {32, 64} and the number of trees is
larger than 5, 000. Table 3 relates this super-linear growth
to the numbers of L3 cache misses.

Considering the sizes of the arrays as reported in Table
1 in Section 3, we can estimate the minimum number of
trees that let the size of the QS’s data structure to exceed
the cache capacity, and, thus, the algorithm starts to have
more cache misses. This number is estimated in 6, 000 trees
when the number of leaves is 64. Thus, we expect that
the number of L3 cache miss starts increasing around this
number of trees. Possibly, this number is slightly larger,
because portions of the data structure may be infrequently
accessed at scoring time, due the the small fraction of false
nodes and associated bitvectors accessed by QS.

These considerations are further confirmed by Figure 4,
which shows the average per-tree per-document scoring time
(µs) and percentage of cache misses QS when scoring the
MSN-1 and the Y!S1 with ⇤ = 64 by varying the number of
trees. First, there exists a strong correlation between QS’s
timings and its number of L3 cache misses. Second, the

number of L3 cache misses starts increasing when dealing
with 9, 000 trees on MSN and 8, 000 trees on Y!S1.

BWQS: a block-wise variant of QS
The previous experiments suggest that improving the cache
e�ciency of QS may result in significant benefits. As in
Tang et al. [12], we can split the tree ensemble in disjoint
blocks of size ⌧ that are processed separately in order to let
the corresponding data structures fit into the faster levels of
the memory hierarchy. This way, we are essentially scoring
each document over each tree blocks that partition the origi-
nal ensemble, thus inheriting the e�ciency of QS on smaller
ensembles. Indeed, the size of the arrays required to score
the documents over a block of trees depends now on ⌧ in-
stead of |T | (see Table 1 in Section 3). We have, however,
to keep an array that stores the partial scoring computed so
far for each document.
The temporal locality of this approach can be improved by

allowing the algorithm to score blocks of documents together
over the same block of trees before moving to the next block
of documents. To allow the algorithm to score a block of �
documents in a single run we have to replicate in � copies the
array v. Obviously, this increases the space occupancy and
may result in a worse use of the cache. Therefore, we need
to find the best balance between the number of documents �
and the number of trees ⌧ to process in the body of a nested
loop that first runs over the blocks of trees (outer loop) and
then over the blocks of documents to score (inner loop).
This algorithm is called BlockWise-QS (BWQS) and its

e�ciency is discussed in the remaining part of this section.
Table 4 reports average per-document scoring time in µs

of algorithms QS, VPred, and BWQS. The experiments
were conducted on both the MSN-1 and Y!S1 datasets by
varying ⇤ and by fixing the number of trees to 20, 000. It
is worth noting that our QS algorithm can be thought as a
limit case of BWQS, where the blocks are trivially composed
of 1 document and the whole ensemble of trees. VPred

instead vectorizes the process and scores 16 documents at
the time over the entire ensemble. With BWQS the sizes of
document and tree blocks can be instead flexibly optimized
according to the cache parameters. Table 4 reports the best

• Public	datasets:	MSLR-Web10K	and	Yahoo	LETOR
• Experiments	on	LambdaMART models:	1K,	5K,	10K,	20K	trees	and	8,	16,	32,	64	leaves.

• trained	with	QuickRank [QR].



Vectorized QuickScorer [LNO+16b]
• Extends	QuickScorer by	exploiting	SIMD	capabilities	of	modern	CPUs	(SSE	4.2	and	AVX	2).
• V-QuickScorer exploits	128	bit	registers	(SSE	4.2)	and	256	bit	registers	(AVX	2)	to:

• perform	mask	computation:	with	32	leaves	models,	4	docs	in	parallel	(SSE	4.2),	8	docs	in	parallel	(AVX	2).
• perform	score	computation:	with	32	leaves	models,	2	docs	in	parallel	(SSE	4.2),	4	docs	in	parallel	(AVX	2).

• Tests	on	MSN10K,	Yahoo	LETOR	and	istella datasets.
• Experiments	on	LambdaMART models:	1K,	10K	trees	and	32,	64	leaves.

• trained	with	QuickRank [QR].

[LNO+16b]	C.	Lucchese,	F.	M.	Nardini,	S.	Orlando,	R.	Perego,	N.	Tonellotto,	and	R.	Venturini.	Exploiting	CPU	SIMD	extensions	to	
speed-up	document	scoring	with	tree	ensembles.	.	In	Proc.	ACM	SIGIR,	2016.

Table 1: Per-document scoring time in µs of QS, vQS (SSE 4.2), vQS (AVX-2) on MSN-1, Y!S1, and istella datasets.
Speedups over the baseline QS are reported in parentheses.

⇤ Method

Number of trees/dataset

1,000 10,000

MSN-1 Y!S1 istella MSN-1 Y!S1 istella

32

QS 6.3 (–) 12.5 (–) 8.9 (–) 73.7 (–) 88.7 (–) 69.9 (–)

vQS (SSE 4.2) 3.2 (2.0x) 5.2 (2.4x) 4.2 (2.1x) 46.2 (1.6x) 53.7 (1.7x) 38.6 (1.8x)

vQS (AVX-2) 2.6 (2.4x) 3.9 (3.2x) 3.1 (2.9x) 39.6 (1.9x) 43.7 (2.0x) 30.7 (2.3x)

64

QS 11.9 (-) 18.8 (-) 14.3 (-) 183.7 (-) 182.7 (-) 162.2 (-)

vQS (SSE 4.2) 10.2 (1.2x) 13.9 (1.4x) 11.0 (1.3x) 173.1 (1.1x) 164.3 (1.1x) 132.2 (1.2x)

vQS (AVX-2) 7.9 (1.5x) 10.5 (1.8x) 8.0 (1.8x) 138.2 (1.3x) 140.0 (1.3x) 104.2 (1.6x)

partitioning. To the best of our knowledge, this is the largest
publicly available LtR dataset, particularly useful for large-
scale experiments on the e�ciency and scalability of LtR so-
lutions. In all the three datasets, feature vectors are labeled
with judgments ranging from 0 (irrelevant) to 4 (perfectly
relevant).

Experimental methodology. We trained �-MART [6]
models optimizing NDCG@10 on the three datasets, and
generated models with ⇤ = 32 or ⇤ = 64 leaves and with
|T |=1,000 or |T |=10,000 trees. We used the open source im-
plementation of �-MART by [2], however it is worth noting
that the results reported in this work are independent of the
training algorithm implementation. To provide a fair com-
parison, vQS was implemented by engineering the source
code of QS. In the following we reported the average per-
document scoring time averaged over 10 runs. The tests
were performed on a machine equipped with an Intel Xeon
CPU E5-2630 v3 clocked at 2.40GHz with 20 MB of cache
L3 and 64GB RAM.

E�ciency evaluation. Table 1 reports the average time
(in µs) for scoring a single document across the three datasets,
when varying both the number of trees and leaves in the en-
semble. The best improvements are achived with ⇤ = 32,
as vQS can use either 4- or 8-way parallelism for both fea-
ture predicate testing and bitvectors updating. When using
AVX-2, speed-ups range from 1.9x (for MSN-1 with 10,000
trees) to 3.2x (for Y!S1 with 1,000 trees). These are greatly
reduced woth SSE 4.2, with a maximum speedup of 2.4x for
the 1,000 trees model over Y!S1. As expected, performance
worsen with ⇤ = 64, with a maximum speed-up of 1.8x.
The lower improvement is due to ine�ciencies deriving from
additional processing required to align the 4-/8-way com-
parisons to the 2-/4-way conditional mask updates.
A final note regards the overheads of the vectorized code

during the scan of the ordered list of feature thresholds N�.
While QS stops as soon as the single document feature is
greater of the current threshold, vQS must continue as long
as at least one among the 4 or 8 documents evaluated si-
multaneously does not match the exit criterion. We instru-
mented the code to measure this di↵erence. The tests con-
ducted on MSN-1, with 10K trees and ⇤ = 64, confirmed
the hypothesis: to score a single document QS executes in
average 15.76 tests per tree, while this number increases
to 22.80 and 26.68 for the SSE 4.2 and AVX-2 versions of
vQS, respectively. In fact, we observed that while the score
computation step benefits significantly of the increased par-
allelism provided by AVX-2, the mask computation step ex-
hibits only a limited improvement, due to the additional
comparison costs mentioned above.

5. CONCLUSION
We discussed in depth the vectorization of QS, the state-

of-the-art algorithm for scoring documents with LtR tree
ensembles. Using SIMD capabilities of mainstream CPUs,
namely SSE 4.2 and AVX 2, vQS can process up to 8 doc-
uments in parallel, although there is a tradeo↵ due to the
possible increase in the number of operations carried out.
We also highlighted some features of these SIMD coproces-
sors, which force to re-design algorithms in non trivial ways.
The upcoming AVX-512 extension, due to wider regis-

ters, would allow to further increase the parallelism degree
up to 16 documents. Wider registers are not the only ben-
efit, since many new instructions will be available. One ex-
ample is mm512 lzcnt epi32, which counts the number of
leading zeros, i.e., the index of the first bit set to 1, in each
of the 16 sub-groups of 32 bits. This would allow to par-
allelize the code at lines 18-19 of Alg. 2, where the indexes
of 16 exit leaves in leafvalues would be computed simul-
taneously. Moreover, masked/predicated instructions would
allow to more easily pipeline comparision, update and store
operations.
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Further	Reading

• Tang	et	al. [TJY14]	investigates	data	traversal	methods	for	fast	score	
calculation	with	large	ensembles	of	regression	trees.	Authors	propose	a	2D	
blocking	scheme	for	better	cache	utilization.
• Introduction	of	document	and	tree	blocking	for	a	better	exploitation	of	cache	layers	
of	modern	CPUs.	The	technique	is	used	by	Lucchese et	al. [LNO+15].

• Jin et	al.	[JYT16]	provide an	analytical comparison of	cache blocking
methods.	Moreover,	they propose a	technique to	select a	traversal method
and	its optimal blocking parameters for	effective use of	memory hierarchy.
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Thanks	a	lot	for	your	attention!
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