# Efficiency/Effectiveness Trade-offs in Learning to Rank

Tutorial @ ECML PKDD 2018 http://learningtorank.isti.cnr.it

Claudio Lucchese Ca' Foscari University of Venice Venice, Italy Franco Maria Nardini HPC Lab, ISTI-CNR Pisa, Italy







# Publicly available Learning to Rank Datasets

- Istella Learning to Rank datasets, 2016, 2018
- Yahoo! Learning to Rank Challenge v2.0, 2011
- Microsoft Learning to Rank datasets (MSLR), 2010
- Yandex IMAT, 2009
- LETOR 4.0, April 2009
- LETOR 3.0, December 2008
- LETOR 2.0, December 2007
- LETOR 1.0, April 2007

# Istella Learning to Rank dataset

- Data "used in the past to learn one of the stages of the Istella production ranking pipeline" [1,2].
- Istella LETOR full
  - 33,018 queries
  - 220 features per query-document pair
  - 10,454,629 labeled instances
  - Relevance judgments ranging from 0 (irrelevant) to 4 (perfectly relevant)
  - It comes splitted in train and test sets according to a 80%-20% scheme.
- Istella LETOR small: 3,408,630 labeled instances by sampling irrelevant pairs to an average of 103 examples per query.
- Istella LETOR extended: 26,791,447 documents for 10,000 queries produced by retrieving up to 5,000 documents per query according to the BM25F ranking score. istella
- [1] http://blog.istella.it/istella-learning-to-rank-dataset/
- [2] http://www.istella.it

### MSLR and Yahoo!

- MSLR Web30K and Web10K
  - From Microsoft
  - Partitioned in five fold for easy cross-validation
  - Two sets, 10K and 30K queries, 136 features, 5-graded label
  - https://www.microsoft.com/en-us/research/project/mslr/
- Yahoo! Learning to Rank v2.0
  - From Yahoo!
  - Two datasets
  - Each dataset is divided in 3 sets: training, validation, and test.
  - Set 1: n. queries (train, valid, test) 19,944 2,994 6,983. n. features: 519
  - Set 2: n. queries (train, valid, test) 1,266 1,266 3,798. n. features: 596
  - https://webscope.sandbox.yahoo.com/

## Software and Libraries

- Training Learning to Rank models
  - XGBoost, University of Washington
  - LightGBM, Microsoft
  - CatBoost, Yandex
  - QuickRank, ISTI-CNR
  - scikit-learn
  - jforests
- Evaluation of Learning to Rank solutions
  - RankEval





- Optimized distributed gradient boosting library
- Implements machine learning gradient boosting algorithms
  - Including DART
- Support for major distributed environment (Hadoop, SGE, MPI)
- Support for GPU
  - CUDA Accelerated Tree Construction
- XGBoost4J: Java/Scala API to export the core functionality of XGBoost library.
  - Enable its use within Spark, Flink and Dataflow
- Very popular on Kaggle
- https://github.com/dmlc/xgboost

T. Chen and C. Guestrin. XGBoost: A Scalable Tree Boosting System. In Proc. ACM SIGKDD, 2016.

# LightGBM

- Fast, distributed, high performance gradient boosting framework based on decision tree
  - Part of the Microsoft Distributed Machine Learning Toolkit (DMTK)
- Parallel and GPU learning supported
- https://github.com/Microsoft/LightGBM
- Experiments on MSN (left) and Yahoo! LETOR (right) against XGBoost [1]

| Metric  | xgboost  | xgboost_hist | LightGBM |
|---------|----------|--------------|----------|
| ndcg@1  | 0.483956 | 0.488649     | 0.524255 |
| ndcg@3  | 0.467951 | 0.473184     | 0.505327 |
| ndcg@5  | 0.472476 | 0.477438     | 0.510007 |
| ndcg@10 | 0.492429 | 0.496967     | 0.527371 |

| Metric  | xgboost  | xgboost_hist | LightGBM |
|---------|----------|--------------|----------|
| ndcg@1  | 0.719748 | 0.720223     | 0.732466 |
| ndcg@3  | 0.717813 | 0.721519     | 0.738048 |
| ndcg@5  | 0.737849 | 0.739904     | 0.756548 |
| ndcg@10 | 0.78089  | 0.783013     | 0.796818 |

[1] <a href="https://github.com/Microsoft/LightGBM/wiki/Experiments">https://github.com/Microsoft/LightGBM/wiki/Experiments</a>





- Machine learning framework by Yandex based on gradient boosting over decision trees.
- Features
  - Support for both numerical and categorical features.
  - Data visualization tools included.
  - Support for the training of oblivious trees.
- Implementations: Python, R, Command-line
- Jupyter notebook tutorials available on GitHub
- https://catboost.yandex/



# CatBoost

|                      | CatBoost | LightGBM           | XGBoost            | H2O                |
|----------------------|----------|--------------------|--------------------|--------------------|
|                      | Tuned    | Tuned              | Tuned              | Tuned              |
| L <sup>z</sup> Adult | 0.26974  | 0.27602<br>+2.33%  | 0.27542<br>+2.11%  | 0.27510<br>+1.99%  |
| Amazon               | 0.13772  | 0.16360<br>+18.80% | 0.16327<br>+18.56% | 0.16264<br>+18.10% |
| Click prediction     | 0.39090  | 0.39633<br>+1.39%  | 0.39624<br>+1.37%  | 0.39759<br>+1.72%  |
| ■ KDD appetency      | 0.07151  | 0.07179<br>+0.40%  | 0.07176<br>+0.35%  | 0.07246<br>+1.33%  |
| KDD churn            | 0.23129  | 0.23205<br>+0.33%  | 0.23312<br>+0.80%  | 0.23275<br>+0.64%  |

## QuickRank



- A parallel C++ suite of Learning to Rank algorithms
- The algorithms currently implemented are:
  - GBRT [Fried01], LambdaMART [Wu10],
  - Oblivious GBRT/LambdaMART [Sega10]
  - CoordinateAscent [Metz07], LineSearch [Luen84], RankBoost [Freu03]
  - DART [Rash15], X-DART [Lucc17],
  - CLEAVER [Lucc16], X-CLEAVER [Lucc18]
- Available under Reciprocal Public License 1.5
- http://quickrank.isti.cnr.it/

# jforests

- jforests is a Java library that implements tree-based learning algorithms.
- Provides "Risk-Sensitive" LambdaMART
- https://github.com/yasserg/jforests
- Available under Apache License 2.0
- Maintained by The University of Glasgow.

Y. Ganjisaffar, R. Caruana, C. Lopes, *Bagging Gradient-Boosted Trees for High Precision, Low Variance Ranking Models*. In Proc. ACM SIGIR, 2011.

#### RankEval



- An Evaluation and Analysis Framework for Learning-to-Rank Solutions
- Functionalities:
  - Effectiveness Analysis
  - Statistical Analysis
  - Topological Analysis
  - Feature Analysis
- Available for Python 2 and 3
- Support for several formats: LightGBM, XGBoost, QuickRank, scikit-learn, jforests, CatBoost
- Available Jupyter Notebooks to ease its use
- Available under Mozilla Public License 2.0
- http://rankeval.isti.cnr.it/, https://github.com/hpclab/rankeval

## References

[Fried01] J. H. Friedman. *Greedy function approximation: a gradient boosting machine*. Annals of Statistics, pages 1189–1232, 2001.

[Wu10] Q. Wu, C. Burges, K. Svore, and J. Gao. Adapting boosting for information retrieval measures. Information Retrieval, 2010.

[Sega10] I. Segalovich. Machine learning in search quality at yandex. Invited Talk, ACM SIGIR, 2010.

[Metz07] Metzler, D., Croft, W.B. Linear feature-based models for information retrieval. Information Retrieval 10(3), pages 257–274, 2007.

[Luen84] D. G. Luenberger. Linear and nonlinear programming. Addison Wesley, 1984.

[Freu03] Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. An efficient boosting algorithm for combining preferences. The Journal of machine learning research, 4, 933-969 (2003).

[Rash15] K.V. Rashmi and R. Gilad-Bachrach. Dart: Dropouts meet multiple additive regression trees. Journal of Machine Learning Research, 38 (2015).

[Lucc16] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, S. Trani. *Post-Learning Optimization of Tree Ensembles for Efficient Ranking*. ACM SIGIR, 2016.

[Lucc17] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego and S. Trani. X-DART: Blending Dropout and Pruning for Efficient Learning to Rank. ACM SIGIR, 2017.

[Lucc18] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, S. Trani. X-CLEaVER: Learning Ranking Ensembles by Growing and Pruning Trees. ACM TIST 2018.